
Abstract 

The aim of this paper is to define a model which allows traders to assess the value of equity and 
credit derivatives in a unified framework. We propose closed-form formulas which traders could use 
to evaluate equity, equity options and credit default swaps (CDSs) in a consistent way. The model 
can also be used to solve the inverse problem, that is to extract credit-risk sensitive information from 
market quotes of equity/credit derivatives. In particular, we wish to estimate the firm’s leverage, as it 
is perceived by traders. This goal is achieved within a model à la Leland (1994), where stockholders 
have a perpetual American option to default. After making the case for modeling debt in terms of a 
single perpetual-bond equivalent issue, we define leverage, show the stochastic nature of equity vol-
atility and derive the term structures of default probabilities and credit spreads by making use of the 
first-passage time distribution function. Then, we give new formulas for call and put options written 
on stockholders’ equity. The formulas, which depend on the leverage parameter L and make use of 
the univariate normal distribution function, are consistent with the volatility skew observed in the 
equity options market and converge to the Black-Scholes-Merton (BSM) equations for L → 1. All 
the Greeks are simple functions of the standard corresponding letters of the BSM model. The paper 
concludes with an application of the model to the case of Lehman Brothers and General Motors. 

Journal of Economic Literature classification: G13 (Financial Economics, General Financial Mar-
kets, Contingent Pricing; Options Pricing). 
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 1. INTRODUCTION 

The aim of this paper is to define a model which allows traders to assess the value of equity and eq-
uity/credit derivatives in a unified framework. We propose closed-form formulas which traders 
could use to evaluate equity, equity options and credit default swaps (CDSs) in a consistent manner. 
The model can also be used to solve the inverse problem, that is to extract credit-risk sensitive in-
formation from market quotes. In particular, the model allows an estimate of the firm’s leverage, as 
it is perceived by traders. 

In equity option markets, traders often quote the implied volatilities of European options – cal-
culated according to the Black-Scholes-Merton model – rather than prices. The quotes reflect the 
shape of the probability distribution of future returns of the underlying asset. The implied volatilities 
generally decrease as the strike price increases, showing a typical downward-sloping volatility skew. 
This is consistent with the hypothesis that the actual distribution of future returns used by option 
traders has extra weight on the left tail with respect to the normal distribution of Black-Scholes-
Merton model. 

One possible explanation for the volatility skew in equity options concerns leverage:1 

As a company’s equity declines in value, the company’s leverage increases. This means that the equity 
becomes more risky and its volatility increases. As a company’s equity increases in value, leverage de-
creases. The equity then becomes less risky and its volatility decreases. This argument suggest that we 
can expect the volatility of a stock to be a decreasing function of the stock price ... 

To define leverage, we need first to define debt. A useful approach is to assume that the mixture of 
bonds with different coupons, bank loans and leases of a firm can be approximated by a single issue 
of a perpetual fixed-rate bond with the same “stochastic duration” of the actual debt.2 The assump-
tion of a infinitely-lived security is not only mathematically convenient, but also a good proxy for a 
short-term debt rolled over again and again as with perpetual floaters. This assumption has been ex-
tensively used by Leland (1994, 1995, 2006, 2009).3 In his model, stockholders have a perpetual 
American option to default. Our changes with respect to the original Leland model (1994) are in the 
spirit of Goldstein-Ju-Leland (2001), where equity depends on the tax rate. 

In the markets for credit default swaps, the term structure of CDS spreads reflects the expecta-
tions of market participants about the firm’s default risk for various time horizons (typically 1, 3, 5, 
7, 10 years) and the requested (credit / liquidity) premia. The main advantage of our structural model 
is that the default barrier is endogenously given as solution of a stockholders’ maximization prob-
lem. This allows to derive closed-form formula for default probabilities and credit spreads which 
make use of the first-passage time distribution function. We do not need to separately estimate ad 
hoc values of recovery rates. 

The structure of the paper is as follows. First, we characterize the different claims hold by the 
firm’s main stakeholders, then we argue that the actual debt can be approximated by a single perpet-
ual-bond equivalent issue and highlight the model’s differences with respect to Leland original arti-
cle. After defining leverage, we show the stochastic nature of equity volatility and derive the term 
structures of default probabilities and credit default swaps (CDSs) spreads. Then, we derive new 
formulas for equity options and show how the model’s parameters can be estimated by using quotes 
of equity and equity options. In particular, we show how to use market data to extract the traders’ 
perceptions of a firm’s leverage, measured in terms of a single perpetual-bond equivalent issue. 

                                                        
1 HULL, John C., Options, Futures, and Other Derivatives, 8th ed., Pearson, p. 415, 2011. 
2 The stochastic duration of a bond is defined as the time to maturity of a zero-coupon bond with the same sensitivity to changes of 
interest rates, i.e. with the same basis risk. “If we wish stochastic duration, D3, to be a proxy for basis risk of coupon bonds with the 
units of time, then it is natural to define it as the maturity of a discount bond with the same risk.” (p. 56). See COX, John C., 
INGERSOLL, Jonathan E., and ROSS, Stephen A., “Duration and the Measurement of Basis Risk”, Journal of Business, vol. 52, no. 1, 
pp. 51-61, January 1979. 
3 LELAND, Hayne, “Corporate Debt Value, Bond Covenants, and Optimal Capital Structure”, Journal of Finance, 49 (4), pp. 1213-
52, September 1994. LELAND, Hayne, “Bond Prices, Yield Spreads, and Optimal Capital Structure with Default Risk”, Finance 
Working Paper no. 240, Haas School of Business, University of California at Berkeley, January 1995. LELAND, Hayne, “Princeton 
Lectures” [Lecture 1 - Pros and Cons of Structural Models - An Introduction, Lecture 2 - A New Structural Model, Lecture 3 - Fi-
nancial Synergies and the Optimal Scope of the Firm - Implications for Mergers and Structured Finance], 2006. LELAND, Hayne, 
“Structural Models and the Credit Crisis”, China International Conference in Finance, July 8, 2009. 
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 2. CAPITAL STRUCTURE 

The contractual relationships among the various firm’s “stakeholders”, considered in the Leland 
model, can be synthesized as in Table 1. The firm’s ownership is shared between stockholders, 
bondholders, third parties (lawyers, accountants, courts, etc.) and the tax authority, which has the 
right to receive the share θ of the firm’s earnings (θ is the tax rate). The assets’ value, V, is divided in 
two parts: θV to the tax authority and (1 – θ)V to the other stakeholders. 

Stockholders issue a perpetual bond with nominal value Z, coupon C = r Z, and market value B. 
Because of firm’s limited liability, they have an option to default, that is the (perpetual) right to sell 
the assets at price Z to the bondholders. In other terms, they have a perpetual American put option, 
with strike Z and market value P, written on V. 

When V = Vb, stockholders exercise their option to default. This prevents equity’s value to be-
come negative. When the (put) option is exercised, stockholders sell the firm’s assets, whose value is 
Vb, and receive Z from bondholders. Such a bankruptcy triggers the execution of another contract. 
When the firm defaults, third parties claim a share α of the firm. 

Therefore, the contracts “negotiated” among the various parties are as follows: 

 1. stockholders use their own capital to buy the firm’s assets. Assets, whose current value is V0, 
can be tangible and intangible (including human capital); 

 2. Tax Authority claims a share θ of the firm’s assets as soon as the firm is created (the Tax Au-
thority is a “special partner” of stockholders); 

 3. bondholders buy a perpetual fixed-rate bond from stockholders. The face value of the corpo-
rate bond, with coupon C, is Z. The bond contains two embedded options: a short perpetual op-
tion to default in favor of stockholders, and a short perpetual digital option (or bankruptcy se-
curity) in favor of third parties. The option to default, with strike Z, is optimally exercised at 
the default time τ, when V = Vb. The perpetual digital option, with barrier Vb, offers a rebate α 
Vb (0 < α < 1) at τ. As soon as the bond is issued, the tax burden θV0 is redistributed among the 
three firm’s claimants, to include the newcomers (bondholders and third parties). 

The current values of the four securities (stock, corporate bond, bankruptcy security, tax claim) are, 
respectively, S0, B0, U0, G0. 

Here we assume that individuals (stockholders, bondholders, third parties) are taxed at the 
same effective rate, θ. Besides, we assume that stockholders, bondholders, third parties are taxed, 
respectively, only when dividends, interests and fees are paid. This means, in particular, that – in or-
der to avoid double taxation – retained earnings are not taxed.4 

                                                        
4 In the notation used by Goldstein-Ju-Leland (2001), interest payments to investors are taxed at a personal rate τi, “effective” divi-
dends are taxed at τd, and corporate profits are taxed at τc. We assume that τd = τi and τc = 0. Therefore, the effective tax rate, τeff, de-
fined by (1 – τeff) = (1 – τc)(1 – τd) is simply equal to τd = τi (and to θ, in our notation). 

TABLE 1   Contracts between stakeholders. 

Contracts 
Stakeholders 

Stockholders Bondholders Third parties Tax Authority 

Firm’s assets V0 - - - 

Risk-free bond –Z Z - - 

Option to default P ≡ (Z – Vb) pb –P ≡ –(Z – Vb) pb - - 

Bankruptcy security - –A ≡ –α Vb pb A ≡ α Vb pb - 

Tax claims –GS ≡ –θ (V0 – Z + P) –GB = –θ (Z – P – A) –GU ≡ –θ A G0 ≡ GS + GB + GU 

Total S0 ≡ (1 – θ) (V0 – Z + P) B0 ≡ (1 – θ) (Z – P – A) U0 ≡ (1 – θ) A G0 ≡ θ V0 

Note: pb is the value of a perpetual first-touch digital option which pays $1 when V = Vb at default time τ. 
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Stakeholders 

The Tax Authority is long on a simple linear contract, with current value 

  00 VθG ≡  (1) 

This is the result of three claims: 

 1. a claim toward stockholders, with current value GS = θ (V0 – Z + P); 
 2. a claim toward bondholders, with current value GB = θ (Z – P – A); 
 3. a claim toward third parties, with current value GU = θ A. 

Third parties (lawyers, etc.) have a portfolio with current value 

  AθU )1(0 −≡  (2) 

They are: 

 1. long on a perpetual bankruptcy security, with current value A, bought from bondholders; 
 2. short on the tax claim GU ≡ θ A. 

Bondholders have a portfolio with current value 

  )()1(0 APZθB −−−≡  (3) 

They are: 

 1. long on a perpetual risk-free bond, with constant value Z, bought from stockholders; 
 2. short on a perpetual option to default, with current value P, sold to stockholders; 
 3. short on a perpetual bankruptcy security, with current value A, sold to third parties; 
 4. short on the tax claim GB = θ (Z – P – A). 

Finally, stockholders have a portfolio with current value 

  )()1( 00 PZVθS +−−≡  (4) 

They are: 

 1. long on the firm’s assets, with current value V0; 
 2. short on a perpetual risk-free bond, with constant value Z, sold to bondholders; 
 3. long on a perpetual option to default, with current value P, bought from bondholders; 
 4. short on the tax claim GS = θ (V0 – Z + P). 

Note that the total value of liabilities, S0 + B0 + U0 + G0, should be equal to the value of the firm’s 
assets, V0: 

 
 

0

000000 )1()()1()()1(
V
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=
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(5) 

Dynamics of Assets’ Value 

The dynamics for the value, V, of the firm’s assets is described by a diffusion-type stochastic process 
with stochastic differential equation 

  dzVσdtVqμdV VVV +−= )(   

where 

 μV is the instantaneous expected rate of return on the firm per unit time; 
 qV is the payout rate (to shareholders, bondholders and Tax Authority); 
 σV is the asset volatility (i.e. the standard deviation of the assets’ rate of return per unit of time); 
 dz is a standard Wiener process 



– 6 – 

Because of Merton’s hedging argument, the price, f, of any time-insensitive derivative with no in-
termediate payments (as the perpetual option to default or the bankruptcy security) should satisfy the 
following differential equation 
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where r is the risk-free interest rate. 
In this context, it is appropriate to note that Merton’s hedging argument does hold even if all of 

the firm’s assets are not tradable nor observable. Although V may not be the value of a traded asset, 
trading of equity (or other contingent claims) allows use of V as the state variable:5 

To understand the intuition of the replication argument, consider an analogy with an ordinary stock op-
tion model. Fundamentally, the option can be priced precisely because we can replicate its payoff using 
the stock and risk free bonds. However, we can just as well value the stock by replicating its payoff using 
the (traded) option. In the same fashion, we can value the firm’s assets using stocks and risk free bonds. 
[Ericsson & Reneby (2002), p. 5] 

Under the assumption of a geometric Brownian motion for V, we can price the contracts negotiated 
by the various stakeholders. 

Contracts 

The current value, A, of the bankruptcy security is equal to: 

  bb pVαA =  (6) 

where 

 α is the ratio between (direct and indirect) bankruptcy costs and the market value of assets prior 
to bankruptcy;6 

 Vb is the optimal default trigger, chosen by stockholders to maximize the value of equity:7 
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 pb is the value of a perpetual first-touch digital option which pays $1 when V = Vb:8 

  2)/( 0
γ

bb VVp =  (8) 

 γ2 is the elasticity of the perpetual first-touch digital option with respect to V: 
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 Z is the constant value of a perpetual risk-free bond: 

 
 

r
CZ =

 
(9) 

 C is the instantaneous coupon per year of a perpetual risk-free bond. 

                                                        
5 ERICSSON, Jan, and RENEBY, Joel, “A Note on Contingent Claims Pricing with Non-Traded Assets”, SSE/EFI Working Paper Se-
ries in Economics and Finance No. 314, June 2002. 
6 Goldstein-Ju-Leland (2001, footnote 20, p. 497) report that direct bankruptcy costs, estimated by Warner (1977), are about 1% of 
assets’ value: “As measured here, the cost of bankruptcy is on average about one percent of the market value of the firm prior to 
bankruptcy” [Warner (1977), p. 377]. See WARNER, Jerold B., “Bankruptcy Costs: Some Evidence”, Journal of Finance, vol. 32, 
no. 2, pp. 337–47, May 1977. However, taking account for indirect costs, Goldstein-Ju-Leland choose α = 5% in their base case. 
7 As we will see later, this is different from the default trigger originally derived by Leland [1994, Equation (14), p. 1222]. 
8 For a proof of pb see, for instance, BARONE, Gaia, “European Compound Options Written on Perpetual American Options”, Jour-
nal of Derivatives, Spring 2013. 
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The current value, P, of the option to default is equal to:9 

  bb pVZP )( −=  (10) 

Therefore, substituting (10) into (4) gives the current value, S0, of equity as 

  ])/)(([)1( 2
000

γ
bb VVVZZVθS −+−−≡  (11) 

Payouts 

The model does not allow the firm to change its business risk, measured by σV, which is a constant, 
but allows for the liquidation of assets to make interest, dividend and tax payments. The firm’s pay-
out policy is defined by qV 
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where 
 qB is the before-tax bond yield 

 
 

B
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(13) 

 qS is the before-tax dividend yield. 

The payout rate, qV, determines the cash flow qV V which is taken out of the assets of the firm. What 
is left out of this cash flow (after paying interest on debt) is paid out to shareholders as dividends. If 
qV V is insufficient to cover coupons on the bonds, shareholders receive a negative dividend (i.e., 
contribute additional cash to the firm). A negative dividend (a cash-flow crisis) does not mean that 
that it is optimal to default: Expected future cash flows could be sufficiently high to induce stock-
holders to keep the firm alive. 

Default Point and Renegotiation 

Stockholders have to determine the optimal default point, Vb. We will suppose that Vb is not affected 
by renegotiation. In other terms, stockholders of distressed firms will not try to persuade bondhold-
ers to renegotiate the contractual terms, even if they have a common interest in avoiding the losses 
associated with bankruptcy. 

The sub-optimality of renegotiation, for both stockholders and bondholders, has been argued by 
Ingersoll (1987, p. 419): 

A natural question at this point is, if the firm is bankrupt at time T, why should the bondholders not rene-
gotiate the contract in hopes that subsequent good fortune would allow the firm to pay them in full? The 
answer should be clear. Under the current contract they have the right to receive all the assets of the firm. 
Why should they settle for less? If the firm is fortunate, they can have all of the profits rather than shar-
ing them. Of course, they would renegotiate if the shareholders made the right concession – add more 
money to the firm. However, they would have to add enough to make up the bankruptcy shortfall plus an 
amount equal to whatever claim on the refinanced firm they would like to own. But again, why should 
they do that? It would cost more than the value they would receive in return. 

Therefore we will assume that, if bankruptcy occurs, bondholders receive all assets (after costs) and 
stockholders none. 

                                                        
9 Note that our Z – P is equal to F(V) in Black & Cox [(1976), Equation (16), p. 364], where c = r Z, V̄ = Vb, V = V0 and α = –γ2: 

 ααα VV
r
cV

r
cVF −+ 








−+= 1)(

 



– 8 – 

The optimal default point, Vb, is chosen by stockholders as the level of V that maximizes the 
value of equity. By (11), maximizing S0 with respect to Vb gives 
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(14) 

Greeks 

By (4), the value of equity is 

  )()1( 00 PZVθS +−−≡  (15) 

and, by (10) and (8), the value of the perpetual option to default is 

  2)/)(( 0
γ

bb VVVZP −=   

Therefore, the delta, ΔP, and gamma, ΓP, of the perpetual option to default are 
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and the delta, ΔS, and gamma, ΓS, of equity are 
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By taking the limits of ΔS for V → Vb and V → ∞, we can see that 0 ≤ ΔS < (1 – θ). Besides, ΓS > 0. 
Therefore, S is a convex function of V, consistently with the “option-like” nature of equity. 

Figure 1 reports equity, S, as a function of asset’s value, V, for different levels of debt’s notional val-
ue, Z 

Leverage 

We define leverage, L, as the ratio between the non-Government value, (1 – θ)V, of firm’s assets and 
the value, S, of equity: 

 
 

S
VθL )1( −

=
 

(18) 

Substituting (15) into (18) and taking the limits of L for V → ∞ and V → Vb shows that 1 < L < +∞. 

Equity Volatility 

By Itô’s lemma, the equity volatility, σS, is 
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Substituting (16)-(18) into (19) gives 
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(20) 
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Equation (20) reveals the stochastic nature of equity volatility, which is a complex function of V.10 
Taking the limits of σS for V → ∞ and V → Vb shows that σV < σS < +∞. 

Figure 2 reports equity volatility, σS, as a function of equity’s value, S, for different levels of 
debt’s nominal value, Z. 

Some values of σS, as a function of Z, qV and σV, are shown in Table 2, together with dividend 
yield (qS), leverage (L), default trigger (Vb), and values of the firm’s stakes (S0, B0, U0, G0). 

The Case for Debt with Infinite-Maturity 

A fundamental property of the Leland model is that debt is approximated by a single perpetual bond. 
While equity is simply a perpetual, residual claim on firm’s assets, debt is much more difficult to de-
fine in general terms. It can be devised in various ways. 

                                                        
10 Equation (20) shows that σS is a function of the random asset value, V. Strictly speaking, our model is a local-volatility model, 
which belongs to the more general class of stochastic-volatility models. The term fully stochastic-volatility has been often used to 
describe models where the asset volatility has a randomness of its own and is driven by a different Wiener process. 
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Figure 1   Equity, S, as a function of asset’s value, V, for different levels of debt’s notional value, Z. 

(r = 4%, qV = 6%, σV = 10%, θ = 35%, α = 5%). 
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Figure 2   Equity volatility, σS, as a function of equity’s value, S, for different levels of debt’s notional value, Z. 

(r = 4%, qV = 6%, σV = 10%, θ = 35%, α = 5%). 
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Often debt has a finite maturity, but this is not always the case. Leland (1994) assumes that it 
has an infinite maturity: 

Very long time horizons for fixed obligations are not new, either in theory or in practice. The original 
Modigliani and Miller (1958) argument assumes debt with infinite maturity. Merton (1974) and Black 
and Cox (1976) look at infinite maturity debt in an explicitly dynamic model. Since 1752 the Bank of 
England has, on occasion, issued Consols, bonds promising a fixed coupon with no final maturity date. 
And preferred stock typically pays a fixed dividend without time limit. [Leland (1994, p. 1215)] 

Debt can be coupon-bearing or have no coupon, can be repaid by amortization or by a balloon pay-
ment at maturity, can pay a fixed, variable or step (mixed) interest, can be assisted by option-like 
covenants (in favor of the issuer or the holder), can include not-paid salaries and delayed payments 

TABLE 2   The firm’s stakes (S0, B0, U0, G0), default trigger (Vb), leverage (L), dividend yield (qS) and equity volatility (σS). 

   Z  Z 

   0 25 50 75 100  0 25 50 75 100 

   qV  qV 

   1.3% 2.0% 2.7% 3.5% 4.3%  1.3% 2.0% 2.7% 3.5% 4.3% 

              

σV 

5% 

S0 

65.00 48.75 32.50 16.53 5.09 

B0 

0.00 16.25 32.50 48.37 58.84 

10% 65.00 48.75 32.71 18.65 9.11 0.00 16.25 32.25 46.01 54.91 

15% 65.00 48.84 33.75 21.57 13.05 0.00 16.15 31.13 42.99 51.07 

20% 65.00 49.19 35.41 24.65 16.81 0.00 15.77 29.41 39.89 47.39 

25% 65.00 49.84 37.34 27.66 20.38 0.00 15.11 27.45 36.89 43.90 

                

σV 

5% 

U0 

0.00 0.00 0.00 0.10 1.07 

G0 

35.00 35.00 35.00 35.00 35.00 

10% 0.00 0.00 0.04 0.34 0.97 35.00 35.00 35.00 35.00 35.00 

15% 0.00 0.01 0.12 0.43 0.88 35.00 35.00 35.00 35.00 35.00 

20% 0.00 0.03 0.18 0.46 0.80 35.00 35.00 35.00 35.00 35.00 

25% 0.00 0.05 0.21 0.45 0.72 35.00 35.00 35.00 35.00 35.00 

                

σV 

5% 

Vb 

0.00 23.60 46.17 66.02 80.79 

L 

1.00 1.33 2.00 3.93 12.77 

10% 0.00 20.62 39.45 55.41 68.15 1.00 1.33 1.99 3.49 7.13 

15% 0.00 17.46 33.14 46.46 57.55 1.00 1.33 1.93 3.01 4.98 

20% 0.00 14.64 27.78 39.08 48.76 1.00 1.32 1.84 2.64 3.87 

25% 0.00 12.28 23.35 33.03 41.49 1.00 1.30 1.74 2.35 3.19 

                

σV 

5% 

qS 

2.00% 2.05% 2.15% 3.03% 5.89% 

σS 

5.00% 6.67% 10.00% 19.05% 42.82% 

10% 2.00% 2.05% 2.14% 2.68% 3.29% 10.00% 13.33% 19.63% 31.22% 49.92% 

15% 2.00% 2.05% 2.07% 2.32% 2.30% 15.00% 19.90% 27.80% 39.16% 54.40% 

20% 2.00% 2.03% 1.98% 2.03% 1.78% 20.00% 26.17% 34.65% 45.32% 58.28% 

25% 2.00% 2.01% 1.87% 1.81% 1.47% 25.00% 32.07% 40.68% 50.63% 62.00% 

Note: V0 = 100, r = 4%, θ = 35%, α = 5%. 
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to suppliers, can have different priority and subordination in the event of dissolution of the firm. 
Last, but not least, debt is always embedded in derivatives contracts which the firm could have en-
tered into. The debt embedded in derivatives contracts can be extremely relevant:11 

Long-Term Capital Management used its $2.2 billion in capital from investors as collateral to buy $125 
billion in securities, and then used those securities as collateral to enter into exotic financial transactions 
valued at $1.25 trillion. [Kahn and Truell (1998)] 

In the well-known Moody’s KMV approach, the reference debt – used to define the “default point” – 
is simply equal to the short-term liabilities plus half of long-term liabilities, both measured in nomi-
nal, accounting, book units.12  

Over time, the firm’s financial structure (leverage, maturity, etc.) changes. Debt can be rolled-
over into other longer-maturity loans. In particular, firms can use revolving credit lines or loan 
commitments – made by a bank or other financial institution – to increase the flexibility of their fi-
nancial structure. 

Theoretically, firms can roll-over their debt an infinite number of times. This makes reasonable 
to approximate the actual debt structure with a unique perpetual fixed-rate bond, as in Merton 
(1974), Black-Cox (1976), Leland (1994), Goldstein-Ju-Leland (2001) and many other papers.13  

From a theoretical standpoint, the time independency of perpetual securities assures that the 
firm’s capital structure does not change abruptly over time, thus simplifying the analysis.14 

From an empirical standpoint, the assumption of a single perpetual issue is an important ad-
vantage with respect to models which assume a finite-maturity debt, because there is no need to es-
timate the debt’s maturity parameter, T.15 

Differences with Respect to Leland’s Original Model 

The firm’s capital structure we defined is different from that used by Leland (1994) in his original 
article. As in Leland, the value of equity, S, does not depend on the parameter α, which measures 
bankruptcy costs. However, differently from Leland, equity does depend on the effective tax rate, θ. 

The definitions of debt, D, and equity, E, used by Leland [1994, Equations (7) and (13)] can be 
obtained, respectively, by merging the claims of bondholders with the claims of the Tax Authority 
towards bondholders and by merging the claims of stockholders with the claim of the Tax Authority 
towards stockholders plus “the value of the tax deduction of coupon payments”, TB(V) = θ Z(1 – pb). 

                                                        
11 KAHN, Joseph, and TRUELL, Peter, “Troubled Investment Fund’s Bets Now Estimated at $1.25 Trillion”, Wall Street Journal, 
September 26, 1998. 
12 Moody’s KMV defines the default point as “The point to which a firm's asset value must fall before the firm is unable to raise 
capital to meet either a principal or interest payment. It is approximately equal to the total amount of short-term liabilities, plus half 
of the long-term liabilities (precise definition varies by industry).” See Moody’s KMV “Credit Monitor Quick Reference”, 2004. 
13 BLACK, Fischer S., and COX, John C., “Valuing Corporate Securities - Some Effects of Bond Indenture Provisions”, Journal of 
Finance 31 (2), 351-367, 1976. GOLDSTEIN, Robert, JU, Nengjiu, and LELAND, Hayne, “An EBIT-Based Model of Dynamic Capital 
Structure”, Journal of Business, vol. 74, no. 4, 2001. 

Leland (1995) has also proposed an “exponential model” where the firm retires the perpetual debt at a proportional rate m 
through time. This roll-over debt structure, with regular repayments and renewals of principal and of coupon, should guarantee a 
stationary debt structure. However Décamps and Villeneuve (2008) show that this extension of Leland’s original model does not 
allow close-form formulas because the default point is not constant anymore, but depends on time. See LELAND, Hayne, “Bond 
Prices, Yield Spreads, and Optimal Capital Structure with Default Risk”, Finance Working Paper no. 240, Haas School of Business, 
University of California at Berkeley, January 1995; DÉCAMPS, Jean-Paul, and VILLENEUVE, Stéphane, “On the modeling of Debt 
Maturity and Endogenous Default - A Caveat”, Working Paper, May 2008. 
14 Note that, because the debt is fixed in nominal terms, the actual leverage tends to decrease in real terms over time. An alternative 
assumption would be to model debt as a perpetual floating-rate bond. However, if coupons were continuously paid at the rate r, the 
basis risk, i.e. the bond’s sensitivity to interest rates, would be null (and this would contradict the empirical evidence). See COX, 
John C., INGERSOLL, Jonathan E., and ROSS, Stephen A., “An Analysis of Variable Rate Loan Contracts”, Journal of Finance, vol. 
35, no. 2, pp. 389-403, May 1980. 
15 MERTON, Robert C., “On the Pricing of Corporate Debt: The Risk Structure of Interest Rates,” Journal of Finance 29, No. 2 (May 
1974), pp. 449–470, reprinted in Robert C. Merton, Continuous-Time Finance, Chapter 12 (Malden, MA: Blackwell, 1990), pp. 
388–412. 

There is some evidence that the longer is T the better is the Merton model fit: “Experimenting with different choices, we find 
that choosing a longer maturity, and hence giving a larger weight to volatility, generates predictions more correlated with market 
observations. We present our results based on T = 10”. See BAI, Jennie, and WU, Liuren, “Anchoring Corporate Credit Spreads to 
Firm Fundamentals”, Working Paper, June 2010 (p. 9). 
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By Table 1 and Equations (8) and (10): 
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Our stricter definition of equity, S0, is equal to the definition of equity, Esolv, used by Goldstein-Ju-
Leland [2001, Equation (19)].16 

Some of the consequences of our different approach, with respect to Leland (1994), are: 

 1. the value of equity does depend on the tax rate θ;17 
 2. the default trigger, Vb, is different from (higher than) the default trigger obtained by Leland; 
 3. it is not possible to derive an optimal capital structure by balancing tax advantages with poten-

tial default costs. 

Another consequence is that – for evaluating equity options – we cannot use the formulas derived 
within the original Leland model. 

 3. TERM STRUCTURE OF DEFAULT PROBABILITIES AND CREDIT DEFAULT SWAPS 

Default Probabilities 

Let Q(T) denote the probability of default between time 0 and time T (included). This is equal to the 
probability that V reaches Vb before T (or in T). Therefore, Q(T) is equal to the first-passage time dis-
tribution function:18 
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where 
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16 According to Equation (19) of Goldstein-Ju-Leland (2001), Esolv = (1 – τeff) (Vsolv – Vint) where Vint = (C/r) (1 – pB). In our notation, 
S0 = Esolv, θ = τeff, V0 – Vb pb = Vsolv, Z(1 – pb) = Vint, pb = pB. Therefore, S0 = (1 –θ)[V0 – Vb pb – Z(1 – pb)] = (1 –θ)[V0 + (Z – Vb) pb – Z] 
= (1 –θ)(V0 + P – Z). In the notation used by Goldstein-Ju-Leland (2001), BCdef = αVdef = αVbpb is the value of the bankruptcy claim. 
We assume that also third parties have to pay taxes. Therefore, our expression for the value, U0, of the bankruptcy claim is equal to 
αVbpb pre-multiplied by (1 – θ). 
17 “In contrast to Leland (1994), equity is a decreasing function of τeff.” Goldstein et al, p. 497. 
18 See Equation (34b), p. 353, in INGERSOLL, Jonathan E., Theory of Financial Decision Making, Rowman & Littlefield, 1987. 
Transformed into our notation, x0 = ln(V0/Vb), μ = r – qV – σV

2/2, 2μ/σ2 = 2(λ – 1), t0 = 0. 
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Equation (21) gives the term structure of unconditional (cumulative) default probabilities and allows 
an easy calculation of the term structure of conditional default probabilities (or hazard rates / default 
intensities). 

Table 3 shows that, by using the actual drift rate μV instead of r, the model can be calibrated to 
fit the term structures of actual default probabilities.19 

In the table, historical default frequencies calculated by Moody’s for different rating classes 
have been reported together with theoretical default probabilities obtained for different values of the 
model’s parameters Z and σV.  

                                                        
19 It should be noted that actual default probabilities shown in the table do not include the (high) risk premiums asked by bond trad-
ers as a compensation for the (high) systematic risk of bond portfolios. 

TABLE 3   Default probabilities. 

 ACTUAL DEFAULT PROBABILITIES (%) 
[source: Moody’s (1970-2009)]    

 Maturity (years)    

Rating 1 2 3 4 5 7 10 15 20    

Aaa 0.000 0.012 0.012 0.037 0.105 0.245 0.497 0.927 1.102    

Aa 0.022 0.059 0.091 0.159 0.234 0.384 0.542 1.150 2.465    

A 0.051 0.165 0.341 0.520 0.717 1.179 2.046 3.572 5.934    

Baa 0.176 0.494 0.912 1.404 1.926 2.996 4.851 8.751 12.327    

Ba 1.166 3.186 5.583 8.123 10.397 14.318 19.964 29.703 37.173    

B 4.546 10.426 16.188 21.256 25.895 34.473 44.377 56.098 62.478    

Caa 17.723 29.384 38.682 46.094 52.286 59.771 71.376 77.545 80.211    

             

 THEORETICAL DEFAULT PROBABILITIES (%)    

 Maturity (years)    

Rating 1 2 3 4 5 7 10 15 20  Z σV (%) 

Aaa 0.000 0.001 0.015 0.057 0.127 0.316 0.614 0.992 1.220  60 11.5 

Aa 0.000 0.005 0.051 0.159 0.314 0.683 1.208 1.829 2.196  65 12.0 

A 0.001 0.106 0.461 0.973 1.530 2.567 3.766 4.991 5.658  70 12.5 

Baa 0.210 2.036 4.528 6.858 8.860 11.970 15.092 18.097 19.768  80 15.0 

Ba 1.933 8.363 14.220 18.859 22.533 27.943 33.240 38.468 41.594  90 20.0 

B 4.708 16.491 26.138 33.488 39.216 47.592 55.841 64.196 69.418  110 35.0 

Caa 13.644 30.656 41.560 49.063 54.588 62.289 69.526 76.567 80.829  140 40.0 

Note: The theoretical default probabilities are based on Equation (21), where the risk-free interest rate r has been replaced with the 
actual drift rate μV. The model’s parameters are: V = 100, μV = 5%, qV = 0%, θ = 35%, α = 5% (the values of Z and σV are a func-
tion of the rating class). 
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CDS Spreads 

Standard single-name credit default swaps (CDSs), where the protection buyer makes periodic pay-
ments and has the right to sell at par the bonds issued by the reference entity, can be priced in the 
framework given by the model.20 

To explain the calculations, let us consider a n-year CDS whose payment dates are at times ti 
(1 ≤ i ≤ m×n), where m is the number of payments per year. The value, A1, of an annuity which pays 
1/m at each payment date until default, τ, or maturity, T = tm×n, whichever comes first, is 
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where yi is the risk-free interest rate for maturity ti and Q(ti) is the default probability given by (21). 
We assume “instant recovery”. In other terms, we assume that – at default time, τ – the protec-

tion buyer receives an instant payment equal to 1 – R, where the recovery rate R is endogenously 
given by the following formula: 
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Substituting (14) into (23), the instant payoff 1 – R to the protection buyer is equal to 
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The present value of the payoff is 

  )()1( TpR b−  (24) 

where pb(T) is the value of a T-maturity first-touch digital option, which pays a unit at time τ (τ ≤ T) 
if the firm defaults at τ. 

Generally, credit default swaps specify that the protection buyer must, at default, pay the CDS 
spread that has accrued since the last coupon date. In order to take this accrual payment into account, 
we subtract one half of the regular payment from the instant payoff 1 – R: 

For reasonably small default probabilities and intercoupon periods, the expected difference in time be-
tween the credit event and the previous coupon date is just slightly less than one-half, in expectation, of 
the length of an intercoupon period, assuming that the default risk is not concentrated at a coupon date. 
Thus, for purposes of pricing in all but extreme cases, one can think of the credit swap as equivalent to 
payment at default of face value less recovery value less one-half of the regular default-swap premium 
payment [Duffie-Singleton (2003), pp. 183-4]. 

Therefore, the present value, A2, of the net CDS payoff is 
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where s is the CDS spread per year. 
The CDS contract is fair when the present value, sA1, of the payments equals the present value, 

A2, of the net payoff, or 

  21 AsA =  (26) 

                                                        
20 For “Model-Based CDS Rates”, see Section 8.4 in DUFFIE, Darrell, and SINGLETON, Ken J., Credit Risk, Princeton University 
Press, 2003. 
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By substituting (22) and (25) into (26), the CDS breakeven spread is 
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(27) 

where the value, pb(T), of a finite-maturity first-touch digital option, with barrier Vb < V0, has been 
derived by Rubinstein and Reiner (1991) as:21 
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It can be shown that (28) converges to (8) when T → ∞. 

 4. EQUITY OPTIONS 

Similarly to Toft (1994), Toft & Prucyk (1996) and Barone (2011), we can derive the value, c, of a 
European call, with strike K and maturity T, written on S as:22 
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where 
 Vdoc is the value of a down-and-out asset-or-nothing call, with strike VT

* and barrier Vb, which pays 
VT at time T if VT > VT

* and Vt > Vb (0 < t ≤ T): 
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 Puop is the value of an up-and-out asset-or-nothing put, with strike PT
* and barrier Pb, which pays 

PT at time T if PT < PT
* and Pt < Pb: 
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 Rdoc is the value of a down-and-out cash-or-nothing call, with strike VT
*, barrier Vb and unit rebate R, 

which pays R = $1 in T if VT > VT
* and Vt > Vb: 
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 VT
* is the critical asset value that makes the call finish at the money; 
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 PT
* is the value of the perpetual first-touch digital when V = VT

*; 

  TσεTσr
T

PPePP
*2 )2/(

0
* −−=   

 ε* is the standardized normal shock that makes the equity call finish at the money; 
N(·) is the standard normal distribution function; 
and 
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21 RUBINSTEIN, Mark e REINER, Eric, “Unscrambling the Binary Code”, Risk, vol. 4, no. 9, pp. 75-83, October 1991. 
22 TOFT, Klaus Bjerre Toft, “Options on Leveraged Equity with Default Risk”, Walter A. Haas School of Business, University of 
California at Berkeley, July 1994. TOFT, Klaus Bjerre Toft, and PRUCYK, Bryan, “Options on Leveraged Equity: Theory and Empir-
ical Tests”, Journal of Finance, Vol. 52, No. 3, pp. 1151-1180, July 1997. BARONE, Gaia, “Equity Options and Bond Options in the 
Leland Model”, “Tor Vergata” University of Rome, Working Paper, March 2011. Downloadable at http://ssrn.com/author=1004723. 

http://ssrn.com/author=1004723
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Under the hypothesis that – if the firm defaults at τ – the buyer receives K at T (and not at τ), the val-
ue, p, of a European put, with strike K and maturity T, written on S is 
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where 
 Rdop is the value of a down-and-out cash-or-nothing put, with strike VT

*, barrier Vb and unit rebate R, 
written on V, which pays R = $1 at time T if VT < VT

* and Vt > Vb (0 < t ≤ T): 
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 Vdop is the value of a down-and-out asset-or-nothing put, with strike VT

* and barrier Vb, written on V, 
which pays VT at time T if VT < VT

* and Vt > Vb: 
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 Puoc is the value of an up-and-out asset-or-nothing call, with strike PT
* and barrier Pb, written on P, 

which pays PT at time T if PT > PT
* and Pt < Pb: 
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 Rdi is the value of a down-and-in (at expiry) cash-or-nothing, with barrier Vb and unit rebate R, 
written on V, which pays R = $1 at time T if Vt ≤ Vb (0 < t ≤ T): 
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Table 4 shows an application of formulas (29) and (30) for call and put equity options. 

Put-Call Parity 

Formulas (29) and (30) satisfy the following put-call parity 
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where 
 Sdo is the value of a down-and-out asset-or-nothing, with barrier 0, written on S, which pays ST at 

time T if St > 0 (0 < t ≤ T): 
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and 
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and the other variables have already been defined. 
Figure 3 shows the values of call and put options, as a function of the equity value, for some 

model’s parameters. The chart also shows the put-call parity relationship, measured by the difference 
c – p. 

Implementing the Model 

The required inputs for estimating the value of equity options by the Black-Scholes-Merton include 
S0, qS and σS. If we add leverage, L, to the list, we can estimate V0, qV, σV and Z by solving a system 
of four simultaneous equations. 

TABLE 4   European equity options. 
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The first equation sets to zero the difference between the theoretical value and the market value 
of equity: 
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The second equation, derived by applying Itô’s lemma, sets to zero the difference between the theo-
retical level and the market estimate of equity volatility: 
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The third equation sets to zero the difference between the theoretical level and the market estimate of 
dividend yield: 
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Finally, the fourth equation sets to zero the difference between the theoretical and actual level of 
leverage: 
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These equations can be solved numerically. Table 5 shows a worksheet where the Excel’s Solver has 
been used to estimate the model’s parameters V0, qV, σV, Z on the basis of the input list S0, qS, σS, L 
(in addition to r, θ, α, K and T). 

 5. TWO APPLICATIONS: LEHMAN BROTHERS AND GENERAL MOTORS 

In Section 3, Table 3 showed the solution of an inverse problem: the calculation of implied default 
probabilities based on actual default probabilities reported by Moody’s for some rating classes. In-
stead in Section 4, Table 4 and Table 5 showed the solution of a direct problem: the value of equity 
options based on two different input lists, which include (V0, qV, σV, Z) or (S0, qS, σS, L). 
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Figure 3   Equity put-call parity (r = 5.5%, qV = 3.5%, σV = 20%, Z = 50, θ = 35%, Vb = 31.19, K = 30, T = 1). 
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Here we show how to solve another inverse problem: the model’s calibration based on the 
spreads of credit default swaps and the quotes of equity and equity options. We will consider market 
daily data on Lehman Brothers and General Motors. 

Lehman Brothers 

As in Brigo-Morini-Tarenghi (2009), we focus on three different dates: July 10th 2007, June 12th 
2008, September 12th 2008.23 The last date immediately precedes September 14th 2008, when Leh-
man filed for Chapter 11 bankruptcy protection. 

Table 6 reports the (actual and theoretical) CDS spreads of Lehman together with the (actual 
and theoretical) quotes of Lehman’s common stock. 

After fixing θ, α, and r, we estimated the other model’s parameters (V, Z, qV, σV), by minimiz-
ing a loss function defined as the sum of weighted squared log differences between actual and theo-
retical values of both CDS spreads and equity quotes.24 

                                                        
23 See BRIGO, Damiano, MORINI, Massimo, and TARENGHI, Marco, “Credit Calibration with Structural Models - The Lehman Case 
and Equity Swaps under Counterparty Risk”, Working Paper, 2009. 
24 The Solver routine in Excel has been used to search for the values of the parameters that minimize the loss function. The routine 
works well provided that the spreadsheet is structured so that the parameters being searched for have roughly equal values. Since 
occasionally Solver gives a local minimum, a number of different starting values for the model’s parameters has been tested. 

TABLE 5   European equity options. 
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Log differences have been used because CDS spreads and equity quotes are measured in differ-
ent units (and have different levels). Weights allow for the perfect fit of the equity quotes. 

The cross-section estimation of the model parameters has been carried out separately for each 
of the three above mentioned dates. Results conform to expectations: 

 1. the assets’ value, V, diminishes as time passes by; 
 2. leverage, L, increases throughout the observation period (from 5.269 to 30.164). As in (18), L 

is the ratio between the after-tax value, (1 – θ) V, of firm’s assets and the value, S, of equity; 
 3. simultaneously, also the business risk, measured by σV, progressively increases (from 14.94% 

to 18.36%); 
 4. the term structures of (unconditional, risk neutral) default probabilities and (conditional, risk 

neutral) default intensities shift upward. However, on September 12th 2008 the immediate fu-
ture of Lehman Brothers was not at all clear: the 1-year default and survival probabilities were 
35.83% and 64.17%, respectively;25 

 5. the recovery rate, R, slightly goes down (from 79.35% to 68.63%). 

                                                        
25 The implied default intensities differ from those calculated in Brigo et al., op. cit., because our values are based on different re-
covery rates. 

TABLE 6   Lehman Brothers: model’s calibration based on CDS spreads and equity. 

  CDSs  Equity 

Date  Maturity Zero 
Rate 

Default 
Prob. 

Survival 
Prob. 

Default 
Intensity 

Actual 
Spread 

Theoretical 
Spread 

Squared 
Error  Market 

Value 
Theoretical 

Value 
Squared 

Error 

t  T – t r Q 1 – Q λ smkt s [ln(smkt/s)]2  Smkt S [ln(Smkt/S)]2 

7/10/2007  1 5.417% 0.68% 99.32% 0.68% 16 14 2.11  69.67 69.67 0.000 

  3 5.322% 6.95% 93.05% 2.40% 29 48 25.55    
Sum of 

Sq. Errors   5 5.437% 11.58% 88.42% 2.46% 45 50 1.02    

  7 5.540% 14.53% 85.47% 2.24% 50 46 0.55    SSE 

  10 5.656% 17.25% 82.75% 1.89% 58 41 11.85    41.08 
              
6/12/2008  1 3.490% 13.69% 86.31% 14.72% 397 380 0.18  22.51 22.51 0.000 

  3 4.289% 32.67% 67.33% 13.19% 315 354 1.34    
Sum of 

Sq. Errors   5 4.608% 40.37% 59.63% 10.34% 277 294 0.34    

  7 4.772% 44.63% 55.37% 8.44% 258 254 0.02    SSE 

  10 4.925% 48.40% 51.60% 6.62% 240 216 1.11    3.01 
              
9/12/2008  1 3.122% 35.83% 64.17% 44.36% 1,437 1,393 0.10  3.65 3.65 0.000 

  3 3.465% 55.40% 44.60% 26.91% 902 949 0.26    
Sum of 

Sq. Errors   5 3.853% 62.08% 37.92% 19.39% 710 752 0.32    

  7 4.123% 65.67% 34.33% 15.27% 636 641 0.01    SSE 

  10 4.388% 68.85% 31.15% 11.66% 588 543 0.63    1.31 
              

Model’s Parameters  Model’s Output 

Date Asset 
Value 

Bond’s 
Face Value 

Payout 
Rate 

Asset 
Volatility  Leverage Bankruptcy 

Trigger 
Option 

to Default 
Option to 

Default Vol. Bond Bond 
Yield 

Recovery 
Rate 

t V Z qV σV  L Vb P σP B0 y R 

7/10/2007 564.5 469.6 0,01% 14.94%  5.269 392.1 12.2 75.63% 295.3 5.85% 79.35% 

6/12/2008 450.1 464.1 0,01% 16.99%  13.022 358.8 48.7 57.89% 264.7 5.61% 73.47% 

9/12/2008 168.6 200.5 0,01% 18.36%  30.164 144.8 37.5 47.71% 102.8 5.56% 68.63% 

Note: -The model’s exogenous parameters are θ = 35%, α = 5%, r = 5.66% (10 Jul 2007), 4.92% (12 Jun 2008), 4.39% (12 Sep 2008). 
All the weights have been set to 1, except for equity weights, which are 30 (10 Jul 2007), 20 (12 Jun 2008), 10 (12 Sep 2008). 
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General Motors 

As a second application of the model, we used market data on General Motors (GM). On April 18th 
2011, the latest available date, we observed CDS spreads, options quotes, equity and equity volatili-
ty. 

The implied volatilities of CBOE options quotes of GM exhibit the usual downward-sloping re-
lationship with respect to strike prices (Figure 4). 

The calibration’s results are shown in Table 7. The model fits less well than for Lehman. The 
valuations made in the market for CDSs do not seem to be aligned with the market quotes of equity 
and equity options.26 In order to explain the high CDS spreads, it would be necessary to assume a 
very high business risk, which would determine unreasonably high levels of equity volatility. 

The conclusion, based on the model, is that the market for CDSs seems to have been much 
more pessimistic on the future of GM than the market for equity and equity options. If one trusts the 
model, there should have been room for convergence trading. 

                                                        
26 Some new empirical evidence documents a “slow information diffusion between the CDS market and the stock market”. See 
HAN, Bing, and ZHOU, Yi, “Term Structure of Credit Default Swap Spreads and Cross-Section of Stock Returns”, Working Paper, 
March 2011. 

 
Figure 4   CBOE options quotes of General Motors: implied volatilities (April 18th, 2011). Source: IVolatility.com 
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 6. CONCLUSIONS 

We have presented a structural model à la Leland (1994), which can be used to value credit and eq-
uity derivatives in a unified framework. In the model, stockholders issue a perpetual fixed-rate bond 
and hold a perpetual American option to default written on the firm’s assets. Stockholders determine 
the (constant) optimal default point which maximizes the value of equity. As a consequence, the T-
year default probabilities are equal to the probabilities that the asset value reaches the default point 
by time T. Default probabilities can be calculated by using the first-passage time distribution func-

TABLE 7   General Motors: model’s calibration based on CDS spreads, equity options, equity, and equity volatility. 

CDSs   

Current 
Date Maturity Zero 

Rate 
Default 

Probability 
Survival 

Probability 
Av. Default 

Intensity 
Actual 
Spread 

Theoretical 
Spread 

Squared 
Error   

t T – t r Q 1 – Q λ smkt s [ln(smkt/s)]2   

4/18/2011 1 0.772% 1.51% 98.49% 1.52% 94 68 10.23%   

 3 1.353% 19.37% 80.63% 7.18% 214 304 12.34%   

 5 2.284% 34.58% 65.42% 8.49% 331 355 0.50%   

 7 2.953% 45.27% 54.73% 8.61% 377 364 0.12%   

 10 3.568% 56.24% 43.76% 8.26% 408 361 1.50%   

        24.68%   
           

Equity Options   

Maturity Time 
to Maturity 

Zero 
Rate Strike Implied 

Volatility 
Critical 
Value 

Market 
Value 

Theoretical 
Value 

Squared 
Error   

T T – t r K σimp VT
* cmkt c [ln(cmkt/c)]2   

5/21/2011 0.09 0.212% 28 34.63% 468.2 2.425 1.682 13.40%   

  0.212% 29 32.95% 471.0 1.700 1.347 5.42%   

  0.212% 30 32.12% 473.8 1.125 1.066 0.29%   

  0.212% 31 30.92% 476.5 0.675 0.834 4.49%   

        23.60%   
           
6/18/2011 0.17 0.247% 28 34.61% 468.2 2.800 2.572 0.72%   

  0.247% 29 33.83% 471.0 2.150 2.205 0.06%   

  0.247% 30 32.69% 473.8 1.575 1.881 3.15%   

  0.247% 31 31.59% 476.5 1.100 1.595 13.81%   

        17.75%   

Equity  Equity Volatility  Sum 
of Squared 

Errors 

 

Current 
Date 

Market 
Value 

Theoretical 
Value 

Squared 
Error  Market 

Value 
Theoretical 

Value 
Squared 

Error   

t Smkt S [ln(Smkt/S)]2  σmkt σS [ln(σmkt/σS)]2  SSE  

4/18/2011 29.97 26.08 1.93%  32.54% 78.24% 76.96%  144.92%  

           

Model’s Parameters  Model’s Output 

Asset 
Value 

Bond’s 
Face Value 

Payout 
Rate 

Asset 
Volatility  Leverage Bankruptcy 

Trigger 
Option 

to Default 
Option to 

Default Vol. Bond Bond 
Yield 

Recovery 
Rate 

V Z qV σV  L Vb P σP B0 y R 

462.6 588.7 4.39% 12.82%  11.5 333.9 166.2 16.80% 267.6 5.10% 53.89% 

Note: The model’s exogenous parameters are θ = 35%, α = 5%, r = 3.57%. All the weights have been set to 1. 
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tion. Similarly, the T-year CDS spreads can be calculated by using the value of finite-maturity first-
touch digital options. 

Equity is equal to a portfolio which is long on the firm’s assets, short on a perpetual risk-free 
bond, long on a perpetual American option to default and short on a tax claim. Equity volatility is 
stochastic, being a complex function of both value and volatility of firm’s assets. By simply adding 
an extra parameter, leverage, to the standard input list of the Black-Scholes-Merton formulas, traders 
can evaluate equity options in a way which is consistent with the downward-sloping volatility skew 
observed in equity options markets. Given the “option-like” nature of equity, equity options are 
compound options written on the firm’s assets. They can be valuated by the Rubinstein-Reiner 
(1991) formulas for binary barrier options, which only require the calculation of the univariate nor-
mal distribution function. 

The model can be used to solve direct and inverse problems. As an example of a direct prob-
lem, we have determined the value of equity options based on two different input lists and, as an ex-
ample of an inverse problem, we showed the calculation of implied default probabilities based on 
actual default probabilities reported by Moody’s for some rating classes. Finally, we have consid-
ered market data on Lehman Brothers and General Motors and show how to calibrate the model by 
using the CDS spreads and the quotes of equity and equity options. 
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